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ABSTRACT

It is impractical to apply a general spike sorting algo-
rithm for every subject because of the individual character-
istics of brain signal. Furthermore, extracting more neural
activities for higher accuracy of spike sorting requires more
input electrodes as well as large power consumption and chip
area. Therefore, several practical constraints are considered in
this work when implementing a programmable spike sorting
hardware with large number of input channels. In this paper,
we provide a 128-channel spike detection processor for spike
sorting microsystem without compromise of the power effi-
ciency. This chip consumes only 87.02uW and 9.7uW/mm2

of power density, fabricated with 90nm low-leakage CMOS
process.

Index Terms— Spike Detection, Spike Sorting, Neural
Signal Processing

1. INTRODUCTION

Spike sorting plays an important role on both neuroprothet-
ics and neuroscientific researches. Many spike detection al-
gorithms, such as simple threshold, non-linear energy oper-
ation(NEO), and root-mean-square power (RMSP), are used
in different researches [1–3]. However, due to the individual
characteristics among each subject’s brain signal, it is imprac-
tical to presume which algorithm is more appropriate for dis-
tinguishing spike classes in subject’s neurons. Another crit-
ical issue is that even the most optimal spike detection al-
gorithm is given, the accuracy of spike sorting methods de-
creases because the brain is a time-variant system [4]. Ac-
cording to this characteristics, it is difficult to predict the most
appropriate strategy for the spike sorting task. Therefore, a
programmable and flexible spike sorting system is necessary
for neural decoding application.

In addition to the programmability for overcoming sub-
jects’ difference, an integrated and implantable system for ex-
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Fig. 1. The hardware operation of neural recording and spike
sorting

perimenting on free-moving subjects is one of the mainstream
research trend [2, 5]. Several design challenges for these im-
plantable and programmable systems must be conquered. A
study in [6] showed that the power dissipation density of an
implantable neural system should be under 800µW/mm2 to
avoid damaging the tissue owing to overheating. On the other
hand, in order to acquire more spike information from more
neurons, a neural processing system in [5], which targeted
on more than 100 channel with high input data rate, dramati-
cally increased power density over 800µW/mm2 and overall
power consumption. These power constraints present difficult
design challenges to a programmable spike sorting system.
Therefore, new algorithm and architecture are needed.

In this article, we propose a new spike detection algorithm
and its VLSI architecture design to overcome aforementioned
design challenges. In Section 2, we analyze the complexity of
spike sorting system and several spike detection algorithms
used in state-of-the-art laboratory apparatus. The proposed
spike detection algorithm and its VLSI design are discussed
in Section 3 and 4, respectively. Section 5 shows the imple-
mentation result, and Section 6 concludes this work.

2. SPIKE SORTING MICROSYSTEM

2.1. Illustration of the Spike Sorting

Fig.1 shows the microsystem comprising neural recording cir-
cuit and digital spike sorting processor (DSSP). For a spike
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Fig. 2. Complexity Estimation of Spike Sorting Algorithm.
The estimated algorithms at each stage are 32-tap FIR Filter,
RMSP spike detection, DWT-PCA feature extraction, and k-
means classification.
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Fig. 3. Proposed spike detection flow on single channel spike
sorting system.

sorting microsystem, raw neural activities are recorded, am-
plified, and digitalized in analog front-end circuit, AFNRC,
and transmitted to the input of DSSP for further signal pro-
cessing operation. In DSSP, the spike signal is filtered by
a band-pass Finite Impulse Response (FIR) filter to remove
low frequency component, local field potential, and environ-
mental noise. Neural spikes are first detected from digital
neural signals according to their localized instantaneous en-
ergy. Thus the distinct factors, namely the features, of the
detected neural spike are extracted after the waveform align-
ment. Spikes which have the analogous features are presumed
to be fired from one particular neuron. Hence, the classifier
separates spikes into different clusters according to its wave-
form characteristics in the feature space.

2.2. Complexity Estimation of Spike Sorting Algorithm

Two of the mentioned design challenges are reducing power
consumption and power density of an implantable hardware
within a prescribed limit. The computational complexity,
given in Fig.2, shows that the most dominant operation is the
spike detection stage. The result of figure 2 is derived by
the following settings of a 128-channel spike sorting system,
25k-sample/sec of each electrode, 30 spike/sec of each neu-
ron, and 32 data sample of each spike. If each electrode is
surrounding by three neurons, the numbers of addition and
multiplication per second in spike detection stage are more

than 100M with RMSP spike detection algorithm in [3] as
the analyzing target. In addition, the computational complex-
ity of spike detection stage will be dramatically increased
in the future if a higher sampling frequency is needed. In
consequence, a new spike detection algorithm is required
to alleviate the burden of the complexity due to the higher
sampling frequency.

3. PROPOSED SPIKE DETECTION ALGORITHM

3.1. Review of Spike Detection Algorithms

Several neuroscientific research groups have published spike
detection algorithms [1–3]. These algorithms have three basic
parts, including energy detection, threshold, and peak detec-
tion. As shown in Eq.(1a), the energy detection of RMSP
requires considerable computation, which is directly propor-
tional to sampling frequency and the number of input chan-
nels, to detect large energy Y [n] in spike windows. If the
energy of spike window is large enough (i.e., T [n] is 1 at
threshold part), a spike is observed as soon as a peak is de-
tected (i.e., P [n] at peak detection part).

Energy Detection: Y [n] =

√√√√ 1

32

31∑
i=0

x2[n+ i] (1a)

Threshold: T [n] = 1, if Y [n] > threshold (1b)
Peak Detection: P [n] = 1, if x[n] > x[n+ k],−3 < k < 3

(1c)

The colossal computation in previous spike detection al-
gorithms results from performing energy detection on each
neural sample. Nonetheless, evaluation on each sample is not
efficient since the spike firing rate of each neuron is very low,
normally less than one hundred spikes per second, compared
with sampling rate of the system. Hence, a modification of
the spike detection algorithm is necessary to improve system
efficiency in order to reduce overall power consumption and
power density for the implantable applications.

3.2. Proposed Spike Detection Algorithm

Fig.3 reveals the flow of the proposed spike detection algo-
rithm. Due to the sparsity of neural activities, the proposed
algorithm lowers the computational complexity of spike de-
tection algorithm by reversing the arrangement of comput-
ing stages. First, peak detection stage observes a local peak
of neural waveform by comparing the filtered data x[n] and
its neighboring samples. If x[n] is a local maximum (i.e.,
x[n] > x[n − k], k = 1, 2, 3,−1,−2,−3), the location of
x[n] is labeled as a peak. Once a local peak has been iden-
tified, prethreshold stage examines whether the amplitude of
detected peak is large enough to be a peak of a spike. Fol-
lowing the prethreshold stage, which screens a possible neu-
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Fig. 4. Instructions per second of proposed spike detection
algorithm and previous ones. Peak detection and Prethreshold
can effectively reduce the computational complexity of spike
detection module. This result only considers the computation
of ALU, such as addition, substraction, and multiplication.

ral spike, energy detection, such as NEO and RMSP, checks
whether the neural data from previous stages is a spike signal.

Previous spike detection algorithms [1–3] result in high
computational complexity because they compute the energy
of every neural sample. Since peak detection and prethresh-
old already labels possible location of spikes, energy detec-
tion only checks these possible locations instead of search-
ing all the neural samples. Hence, this mechanism can lessen
the overall computation of spike detection algorithm. Fig.4
shows that the proposed algorithm reduces the computation
of spike detection in DSSP. Directly implementing previous
RMSP algorithm as in Eq.1, the spike detection stage con-
sumes more than 300M instructions per second. After ap-
plying the proposed algorithm, peak detection and prethresh-
old take advantage of the sparsity of neural signal and reduce
the overall computation from 300M to 23.5M. There are also
14.28% and 30% computational reductions when implement-
ing simple threshold and NEO algorithm, respectively. More-
over, after testing neural data “C Easy1” in [7], the worst ac-
curacy drop is less than 0.1% compared to previous spike de-
tection algorithm.

4. PROPOSED ARCHITECTURE

4.1. Overall Architecture Design

For neurascientific and neuraprothetics researches, record-
ing more electrodes provides more neural information and
higher accuracy of spike sorting. Nonetheless, directly im-
plementing 128-channel biosignal processor with fully par-
allel scheme results in larger silicon area and higher power
consumption when developing VLSI architecture of DSSP.
According to previous study in [5], the parallel-folding tech-
nique optimizes the area and power consumption of 128-
channel spike detection processor with 8-channel folding
processing elements (PE) in UMC 90nm low-leakage CMOS
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Fig. 5. The overall architecture of the proposed 128-channel
spike detection processor.

process as shown in Fig.5. Sixteen 8-channel folding PEs
assemble a 128-channel spike detection processor for DSSP.

In Fig.5, the control unit receives 8-bit time-multiplexed
neural data, sampling at 12.5k/sec, and writes these samples
with a channel-interleave scheme as in [5] into each PE. A 32-
bit RISC with 4kB instruction memory and 4kB data memory
provides programmability and flexibility for accommodating
the individual characteristic. Programmer can implement dif-
ferent spike detection algorithms and convert it to machine
code in instruction SRAM. Users can also set parameters for
each channel in data SRAM through the control unit. The
memory-mapped register (MMR) keeps presetting parame-
ters of each channel for prethreshold module. Once possi-
ble neural spikes are detected, each PE requests the 16-to-1
arbiter to write these data into neural data buffer SRAM for
energy detection. After accepting neural data from PEs, the
16-to-1 arbiter triggers the 32-bit RISC to perform the energy
detection algorithm to check whether these neural data is a
real spike. If the RISC detects spikes, it issues command to
the direct memory access unit (DMA) to automatically trans-
fer spike data from the neural data buffer SRAM to the spike
ping-pong buffer SRAM for alignment process. After finish-
ing data transfer, DMA sends acknowledgement back to RISC
to indicate a successful output of spike.

4.2. Processing Elements

Processing Element comprises a queueing SRAM for neural
signal, the register array, and the computation units. The fil-
tered neural samples are written from the control unit with
a channel-interleave scheme into queueing SRAM. A finite
state machine (FSM) loads neural data from queueing SRAM
to the register array for the peak detection and the prethresh-
old modules. The peak detection and the prethreshold check
whether each local maximum data is large enough to be a peak
of a spike. If a local peak with high amplitude is found, the
FSM transmits these neural samples to the 16-to-1 arbiter.



Fig. 6. Chip micrograph of the spike sorting processor with
proposed spike detection hardware. The spike detection hard-
ware is implemented as dedicated hardware, including peak
detection and prethreshold, and 32-bit RISC.

Table 1. Synthesized Result in 90nm CMOS Process

Process UMC 90nm 1P9M
Low-leakage CMOS

Supply Voltage 1.0 Volt
Operation Frequency 20MHz in Maximum
Core Area 5.92mm2

Chip Area 8.89mm2

Power Consumption 87.02uW (0.68uW/channel)*
Power Density 9.7uW/mm2

*The algorithm running on the microprocessor is NEO
spike detection, DWT-PCA feature extraction, and k-
means classifier.

Storing 128-channel neural data in the register array
causes large dynamic and leakage power because all registers
need to be active to pass data to neighboring register. Since
all registers are active to transmit neural data, this mechanism
in [5] violates the constraint of power density and causes heat
damage to subject’s tissue. Therefore, in the proposed PE,
neural data are written into queueing SRAM one by one to
reduce overall power consumption and power density.

5. IMPLEMENTATION RESULT

As shown in Fig.6, the die micrograph of the chip, the pro-
posed spike detection processor is one important module of
128-channel DSSP. Table 1 summarizes the implementation
result of the silicon chip. The RISC-based spike detec-
tion hardware supports the programability for various spike
sorting algorithm in order to accommodate the individual
characteristics. Each spike detection algorithm is coded in
assembling language, compiled to the machine code, and
programmed into the spike sorting processor. For each al-
gorithms, the required parameters of prethreshold are pre-
trained off-line in the PC. The spike detection hardware re-
quires 1.19mm2 area including 33.5k logic gates and 137.6kb
SRAM. The SRAMs are used to queue filtered neural data,

Table 2. Comparison with Previous Work
Reference [5] [2] This Work
Programmability No No Yes
No. of Channels 128 64 128
Power (uW/channel) 14.6 2.03 0.68
Area (mm2/channel) 0.01 0.06 0.06
Power Density (uW/mm2) 1460 30 9.7
Process (nm) 90 90 90
Core Voltage (V) 1.08 0.55 1.0

buffer neural data for RISC, store instruction and data for
RISC, and transmit detected spikes for alignment module.
The spike detection hardware can handle at most 125k spikes
per second with 20MHz operation frequency. This specifica-
tion is able to perform on-line processing for 4k neurons with
spike firing rate of 30 spikes/neuron.

Table 2 compares this work with previous ones. Our chip
provides programmability for different spike detection algo-
rithms. The power per channel is 87.02uW and 30% of previ-
ous works [2] if performing same spike detection algorithm.
The power density is 9.7uW/mm2, only 32% of [2].

6. CONCLUSION

In this paper, a spike detection processor is proposed with
flexible programmability for 128 channel spike sorting mi-
crosystem. The proposed algorithm is implemented and fab-
ricated in 90nm low-leakage CMOS process. The implemen-
tation result shows that this spike detection processor operates
on-line processing up to 4k neurons without compromise of
the power efficiency.
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